Math 15400 Exam Jam

Chapter 6: The Trigonometric Functions ..1

Chapter 7: Analytic Trigonometry ..3

Chapter 8: Applications of Trigonometry ...6

Chapter 9: Systems of Equations and Inequalities ...8

Chapter 11: Topics from Analytic Geometry ...9

Chapter 6: The Trigonometric Functions

1. Given \(s = 7 \text{ cm} \) and \(r = 4 \text{ cm} \), answer the following
 a. Find the radian and degree measures of the central angle \(\theta \) subtended by the given arc of length \(s \) on a circle of radius \(r \).
 b. Find the area of the sector determined by \(\theta \).

 \(\text{Section 6.1 – Angles} \)

2. Given a radius 5 in. and 40 rpm, answer the following:
 a. Find the angular speed (in radians per minute).
 b. Find the linear speed of a point on the circumference (in feet per minute).

 \(\text{Section 6.1 – Angles} \)

3. Use the fundamental identities to write \(\cot \theta \) in terms of \(\sin \theta \) for any acute angle \(\theta \).

 \(\text{Section 6.2 – Trigonometric Functions of Angles} \)

4. Verify the identity.
 \[
 \sec(\theta) - \cos(\theta) = \tan(\theta) \sin(\theta)
 \]

 \(\text{Section 6.2 – Trigonometric Functions of Angles} \)

5. Find the exact value.
 a. \(\csc\left(\frac{3\pi}{4}\right) \)
 b. \(\csc\left(-\frac{2\pi}{3}\right) \)

 \(\text{Section 6.4 – Values of Trigonometric Functions} \)

6. Approximate, to the nearest 0.01 radian, all angles \(\theta \) in the interval \([0,2\pi]\) that satisfy the equation.
 a. \(\sin(\theta) = 0.4195 \)
 b. \(\tan(\theta) = -3.2504 \)
 c. \(\sec(\theta) = 1.7452 \)

 \(\text{Section 6.4 – Values of Trigonometric Functions} \)
7. Find the amplitude, period, and phase shift. Then sketch the graph.

\[y = -2 \sin(3x - \pi) \]

Section 6.5 – Trigonometric Graphs

8. An airplane takes off at a 10° angle and travels at a rate of 250 ft/sec. Approximately how long does it take the plane to reach an altitude of 15,000 ft?

Section 6.5 – Trigonometric Graphs
Chapter 7: Analytic Trigonometry

9. Verify the identity.

\[
\frac{1}{1 - \cos(\gamma)} + \frac{1}{1 + \cos(\gamma)} = 2\csc^2(\gamma)
\]

Section 7.1 – Verifying Trigonometric Identities

10. Verify the identity.

\[
\tan^4(k) - \sec^4(k) = 1 - 2\sec^2(k)
\]

Section 7.1 – Verifying Trigonometric Identities

11. Find all solutions to the equation.

\[
\sin\left(2x - \frac{\pi}{3}\right) = \frac{1}{2}
\]

Section 7.2 – Trigonometric Equations

12. Find the solutions that are in the interval \([0, 2\pi]\).

\[
2\tan(t) - \sec^2(t) = 0
\]

Section 7.2 – Trigonometric Equations

13. Approximate, to the nearest 10’, the solutions in the interval \([0^\circ, 360^\circ]\).

\[
\sin^2(t) - 4\sin(t) + 1 = 0
\]

Section 7.2 – Trigonometric Equations
14. If \(\sin(\alpha) = -\frac{4}{5}\) and \(\sec(\beta) = \frac{5}{3}\) for a third-quadrant angle \(\alpha\) and a first-quadrant angle \(\beta\), find the following.
 a. \(\sin(\alpha + \beta)\)
 b. \(\tan(\alpha + \beta)\)
 c. The quadrant containing \(\alpha + \beta\)

Section 7.3 – The Addition and Subtraction Formulas

15. Find the exact values of \(\sin 2\theta\), \(\cos 2\theta\), and \(\tan 2\theta\) given the information below.

\[
\sec \theta = -3 \quad 90^\circ < \theta < 180^\circ
\]

Section 7.4 – Multiple-Angle Formulas

16. Find the solutions that are in the interval \([0, 2\pi)\).

\[
\sin 2t + \sin t = 0
\]

Section 7.4 – Multiple-Angle Formulas

17. Find the exact value.
 a. \(\cot(\sin^{-1} \left(\frac{2}{3}\right))\)
 b. \(\sec(\tan^{-1}(-\frac{3}{5}))\)
 c. \(\csc(\cos^{-1}(-\frac{1}{4}))\)

Section 7.6 – The Inverse Trigonometric Functions

18. Find the exact value whenever it is defined.
 a. \(\sin(\arcsin(\frac{1}{2}) + \arccos(0))\)
 b. \(\cos[\arctan(-\frac{3}{4}) - \arcsin(\frac{4}{5})]\)
 c. \(\tan(\arctan(\frac{4}{3}) + \arccos(\frac{8}{17}))\)

Section 7.6 – The Inverse Trigonometric Functions
19. Find the exact value whenever it is defined.
 a. \(\sin\left[2 \arccos\left(-\frac{3}{5}\right)\right] \)
 b. \(\cos\left[2 \sin^{-1}\left(\frac{15}{17}\right)\right] \)
 c. \(\tan\left[2 \tan^{-1}\left(\frac{3}{4}\right)\right] \)

Section 7.6 – The Inverse Trigonometric Functions

20. Write the expression as an algebraic expression in terms of \(x \) for \(x > 0 \).

\[
\sin\left(2 \sin^{-1} x\right)
\]

Section 7.6 – The Inverse Trigonometric Functions

21. Use inverse trigonometric functions to find the solutions of the equation that are in \([0, 2\pi)\). Approximate to four decimal places.

\[
\cos^2 x + 2 \cos x - 1 = 0
\]

Section 7.6 – The Inverse Trigonometric Functions
Chapter 8: Applications of Trigonometry

22. Solve \(\triangle ABC \).
\[
\gamma = 81^\circ \quad c = 11 \quad b = 12
\]

Section 8.1 – The Law of Sines

23. A forest ranger at an observation point A sights a fire in the direction \(N27^\circ 10' E \). Another ranger at an observation point B, 6 miles east of point A, sights the same fire in the direction \(N52^\circ 40' W \). Approximate the distance between point A and the fire.

Section 8.1 – The Law of Sines

24. Solve \(\triangle ABC \).
\[
a = 25.0 \quad b = 80.0 \quad c = 60.0
\]

Section 8.2 – The Law of Cosines

25. A triangular plot of land has sides of lengths 420 feet, 350 feet, and 180 feet. Approximate the smallest angle between the sides.

Section 8.2 – The Law of Cosines

26. Approximate the area of \(\triangle ABC \).
\[
a = 80.1^\circ \quad a = 8.0 \quad b = 3.4
\]

Section 8.2 – The Law of Cosines

27. Approximate the area of \(\triangle ABC \).
\[
a = 25.0 \quad b = 80.0 \quad c = 60.0
\]

Section 8.2 – The Law of Cosines
28. Approximate the areas of the parallelogram that has sides of length \(a \) and \(b \) (in feet) of one angle at the vertex has measure \(\theta \)

\[
a = 12.0 \quad b = 16.0 \quad \theta = 40^\circ
\]

\textit{Section 8.2 – The Law of Cosines}
Chapter 9: Systems of Equations and Inequalities

29. Use the method of substitution to solve the system.

\[
\begin{align*}
 x^2 + y^2 &= 16 \\
 2y - x &= 4
\end{align*}
\]

Section 9.1 – Systems of Equations

30. Use the method of substitution to solve the system.

\[
\begin{align*}
 y^2 + 4x^2 &= 4 \\
 9y^2 + 16x^2 &= 140
\end{align*}
\]

Section 9.1 – Systems of Equations

31. Use the method of substitution to solve the system.

\[
\begin{align*}
 x &= y^2 - 4y + 5 \\
 x - y &= 1
\end{align*}
\]

Section 9.1 – Systems of Equations

32. The price of admission to a high school play was $3.00 for students and $4.50 for nonstudents. If 450 tickets were sold for a total of $1555.50, how many of each kind were purchased?

Section 9.2 – Systems of Linear Equations in Two Variables

33. A small furniture company manufactures sofas and recliners. Each sofa requires 8 hours of labor and $180 in materials, while a recliner can be built for $105 in 6 hours. The company has 340 hours of labor available each week and can afford to buy $6750 worth of materials. How many recliners and sofas can be produced if all labor hours and all materials must be used?

Section 9.2 – Systems of Linear Equations in Two Variables
Chapter 11: Topics from Analytic Geometry

34. Find the vertex, focus, and directrix of the parabola. Sketch its graph, showing the focus and the directrix.

\[y = x^2 - 4x + 2 \]

Section 11.1 – Parabolas

35. Find an equation of the parabola that satisfies the given conditions.

Focus: \(F(6, 4) \)
Directrix: \(y = -2 \)

Section 11.1 – Parabolas

36. Find the equation of the parabola that satisfies the given conditions.

Vertex \(V(-3, 5) \), axis parallel to the \(x \)-axis, and passing through the point \((5, 9)\).

Section 11.1 – Parabolas

37. Find the vertices and foci of the ellipse. Sketch its graph, showing the foci.

\[\frac{(x - 3)^2}{16} + \frac{(y + 4)^2}{9} = 1 \]

Section 11.2 – Ellipses

38. Find the vertices and foci of the ellipse. Sketch its graph, showing the foci.

\[4x^2 + 9y^2 - 32x - 36y + 64 = 0 \]

Section 11.2 – Ellipses

39. Find an equation of the ellipse that has its center at the origin and satisfies the given conditions:

Vertices: \(V(\pm 8, 0) \)
Foci: \(F(\pm 5, 0) \)

Section 11.2 – Ellipses
40. Find the vertices, the foci, and the equation of the asymptotes of the hyperbola. Sketch its graph, showing the asymptotes and the foci.

\[4y^2 - x^2 + 40y - 4x + 60 = 0 \]

Section 11.3 – Hyperbolas

41. Find the equation of the hyperbola that has its center at the origin and satisfies the given conditions:

- Vertices: \(V(\pm 4, 0) \)
- Passing through \((8, 2)\)

Section 11.3 – Hyperbolas