Math 11000 Exam Jam

Contents

1 Algebra Review
2 Functions and Graphs
3 Exponents and Radicals
4 Quadratic Functions and Equations
5 Exponential and Logarithmic Functions
6 Systems of Linear Equations
7 Inequalities
8 Logic and Truth Tables
1 Algebra Review

1. Evaluate $-x^2 - 7x$ for $x = -3$.

2. Solve for x.

\[8x - (4x + 5) = 19 \]

3. Find the slope and the y-intercept of the equation. Also graph the line.

\[2x + 3y = 6 \]

4. Simplify.

\[(8x^4 + 7x^3 - 2) - (2x^3 + x^2 - 3) \]

5. Multiply.

\[(2x - 3)^2 \]

6. Factor completely. If it is prime, state this.

\[18t^5 - 12t^4 + 6t^3 \]
2 Functions and Graphs

7. Find the function values.

\[f(n) = 5n^2 + 4n \]

(a) \(f(-1) \)

(b) \(f(3) \)

(c) \(f(2a) \)

8. For the graph of the function \(f \), determine the domain and range of \(f \) and find \(f(1) \) where \(f(x) = x^2 + 1 \).

9. In 2000, the life expectancy of females born that year was 79.7 years. In 2010, it was 81.1 years. Let \(E(t) \) represent life expectancy and \(t \) the number of years since 2000.

(a) Find a linear function that fits the data.

(b) Use the linear function of part (a) to predict the life expectancy of females in 2020.

10. Let \(F(x) = x^2 - 2 \) and \(G(x) = 5 - x \). Find the following:

(a) \((F + G)(3)\)

(b) \((F \cdot G)(x)\)

11. Let \(f(x) = 16x - 4 \). Find the inverse of the function.
3 Exponents and Radicals

12. Simplify. Variables may represent any real number, so remember to use absolute-value notation when necessary. If a root cannot be simplified, state this.

\[\sqrt{y^2 + 16y + 64} \]

13. Use rational exponents to simplify. Write the answer using radical notation.

\[12\sqrt{a^6} \]

14. Simplify. Assume that no radicands were formed by raising negative numbers to even powers.

(a) \(\sqrt{45} \)
(b) \(\sqrt{120} \)
(c) \(\sqrt{6}\sqrt{33} \)

15. Rationalize the denominator.

\[\frac{\sqrt{5}}{\sqrt{8}} \]
4 Quadratic Functions and Equations

16. Solve by factoring and using the principal of zero products.
 (a) \(x^2 + 4x - 21 = 0 \)
 (b) \(64 + x^2 = 16x \)
 (c) \(4t^2 = 8t \)

17. Solve for \(x \).
 \(4x^2 - 12 = 0 \)

18. Solve. (Find all complex-number solutions.)
 \((t + 5)^2 = 12 \)

19. Let \(f(x) = 6x^2 - 7x - 20 \). Find \(x \) such that \(f(x) = 0 \).

20. A number is 6 less than its square. Find all such numbers.

21. The distance an object travels in a straight line is given by the function \(s(t) = t^2 - 8t \), where \(s \) is in feet and \(t \) is the number of seconds the object has been in motion. How long does it take the object to move 9 feet?

22. Graph the function and find the vertex, the axis of symmetry, and the maximum value or the minimum value.
 \(h(x) = -2(x - 1)^2 - 3 \)

23. Find any \(x \)-intercepts and the \(y \)-intercept. If no intercepts exist, state this.
 \(f(x) = x^2 - 6x + 3 \)

24. Find the vertex.
 \(f(x) = 3x^2 - 12x + 8 \)

25. Sweet Harmony Crafts has determined that when \(x \) hundred dulcimers are built, the average cost per dulcimer can be estimated by
 \[C(x) = 0.1x^2 - 0.7x + 2.425 \]
 where \(C(x) \) is in hundreds of dollars. What is the minimum average cost per dulcimer and how many dulcimers should be built in order to achieve that minimum?
5 Exponential and Logarithmic Functions

26. Given $f(x) = 5x + 1$ and $g(x) = x^2$, find:
 (a) $(f \circ g)(2)$
 (b) $(g \circ f)(x)$

27. Graph.
 (a) $f(x) = 3^x$
 (b) $g(x) = \left(\frac{1}{4}\right)^x$

28. Solve.

 $\log_2 32 = x$

29. Express as an equivalent expression, using the individual logarithms of x, y, and z.

 $\log_a \frac{x^5}{y^3z}$

30. Use a calculator to find each of the following to four decimal places.
 (a) $\log 7$
 (b) $\ln 9$
 (c) $e^{2.71}$

31. Solve for x. Approximate to three decimal places if necessary.
 (a) $4^{x+1} = 16$
 (b) $3^{2x} = 2$
 (c) $10^{x-3} = 5$
 (d) $6e^{0.05x} = 18$

32. Suppose that P_0 is invested in a savings account where interest is compounded continuously at 3% per year.
 (a) Express $P(t)$ in terms of P_0 and 0.03.
 (b) Suppose that 5000 is invested. What is the balance after 1 year? After 2 years?
 (c) When will an investment of 5000 double itself?
6 Systems of Linear Equations

33. Solve the system graphically. Be sure to check your solution. If a system has an infinite number of solutions, use set-builder notation to write the solution set. If a system has no solution, state this.

\[
\begin{align*}
y - x &= 5 \\
2x - 2y &= 10
\end{align*}
\]

34. Solve using the substitution method.

\[
\begin{align*}
3s - 4t &= 14 \\
5s + t &= 8
\end{align*}
\]

35. Ellen wishes to mix candy worth $1.80 per pound with candy worth $2.40 per pound to form 48 pounds of a mixture worth $2.00 per pound. How many pounds of the more expensive candy should she use?

36. Solve each system. If a system’s equations are dependent or if there is no solution, state this.

\[
\begin{align*}
x - y - z &= 1 \\
2x + y + 2z &= 4 \\
x + y + 3z &= 5
\end{align*}
\]

37. The sum of three numbers is 85. The second is 7 more than the first. The third is 2 more than four times the second. Find the numbers.

38. For the following pair of total-cost and total-revenue functions, find the total-profit function and the break-even point.

\[
\begin{align*}
C(x) &= 15x + 3100, \\
R(x) &= 40x
\end{align*}
\]
7 Inequalities

39. Solve algebraically.

\[5(t - 3) + 4t < 2(7 + 2t) \]

40. Find the indicated intersection.

\[\{2, 4, 16\} \cap \{4, 16, 256\} \]

41. Solve and graph the solution set, where \(f(t) = 5t + 3 \).

\[f(t) < -7 \text{ or } f(t) > 8 \]

42. Solve and graph \(4x - 1 < 7 \) and \(1 - 3x \leq -5 \).

43. Graph.

\[x + y \leq 6, \quad x - y \leq 4 \]

44. Maximize \(F = 6x + 7y \) subject to

\[2x + 3y \leq 12 \]
\[2x + y \leq 8 \]
\[x \geq 0 \]
\[y \geq 0 \]
8 Logic and Truth Tables

45. Let \(p \) represent the statement “She has green eyes” and let \(q \) represent the statement “He is 60 years old.” Translate the symbolic compound statement into words.

\[\sim p \lor \sim q \]

46. Construct a truth table for the compound statement.

\[(q \lor \sim p) \lor \sim q \]

47. Construct a truth table for the statement. Identify whether or not it is a tautology.

\[\sim q \rightarrow p \]

48. For the given conditional statement, write (a) the converse, (b) the inverse, and (c) the contrapositive in “if . . . then” form.

\[p \rightarrow \sim q \]

49. Negate the statement: Not all people like football.

50. Let \(p \) represent the statement “Today is Saturday” and let \(q \) represent the statement “I will go to the movies.” Translate the symbolic compound statement into words.

\[\sim p \lor q, \sim (p \land q), p \rightarrow q, \text{ and } \sim p \leftrightarrow q \]

51. Use DeMorgan’s Laws to negate the statement: It is Saturday and it is not raining.

52. Write the contrapositive, converse, and inverse of the conditional statement: If I were young, I would be happy.