Chapter 6: Matrices

6.1 Matrix Operations

1. Given the matrices
 \[A = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} -1 & 1 & 0 \\ 4 & -2 & 2 \end{pmatrix}, \]
 compute the following, if they are defined.

 a. AB
 b. BA
 c. A + B
 d. 3A

6.2 Solving Systems of Linear Equations

2. Find all solutions to the given system of equations using either Gaussian elimination or Gauss-Jordan elimination.

 \[
 \begin{align*}
 4x + 3y &= 5 \\
 3x - 2y &= 8
 \end{align*}
 \]

3. Find all solutions to the following system of equations.

 \[
 \begin{align*}
 x + 2z &= 1 \\
 x + y + z &= 3 \\
 2x + 3y + 2z &= 9
 \end{align*}
 \]

6.3 Finding a Matrix Inverse and Determinant

4. Find the determinants of the following matrices A and B.

 \[
 A = \begin{pmatrix} 1 & -1 & 0 \\ 2 & -1 & -2 \\ -3 & 3 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 4 & 1 & 0 \\ 3 & 2 & 1 \\ 0 & 4 & 2 \end{pmatrix}
 \]

5. Find the inverses of the following matrices.

 \[
 A = \begin{pmatrix} 3 & 4 \\ 5 & 6 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}
 \]

6.4 Computing Eigenvalues and Eigenvectors

6. Compute the eigenvalues and eigenvectors for the following matrix.

 \[
 A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}
 \]
6.5 Solving Difference Equations

7. Solve the following initial value difference equation. (Note: Not all classes cover this material.)

\[x_{n+1} - 5x_n + 6x_{n-1} = 0 \quad x_0 = 4 \quad x_1 = 9 \]

Chapter 7: Functions of Several Variables

7.1 Functions of Several Variables

8. The surface area of a person (in m²) can be approximated using a formula known as the Haycock formula. The formula is a function of two variables, the person’s height in centimeters and the person’s weight in kilograms. The formula is as follows

\[S(h, w) = 0.024265h^{0.3964}w^{0.5378} \]

Estimate the surface area of a person who is 165 cm tall and weighs 80 kg.

7.2 Partial Derivatives

9. Find first and second order partial derivatives of the function \(f(x, y) = 3xy^2 + 2xy + x^2 \).

7.3 Maximum-Minimum Problems

10. Find all relative maximum and minimum values of the function and verify your result using the \(D \)-Test.

\[f(x, y) = 4xy - x^3 - y^2 \]

Chapter 8: First Order Differential Equations

8.2 Linear First-Order Differential Equations

11. Find the general solutions to the given differential equations.

a. \(y' + 2y = e^t \)

b. \(y' + \frac{2}{x}y = \frac{2e^{x^2}}{x} \)

c. \(y' + y \tan x = \cos x \)

12. Solve the following the initial value problem.

\[\frac{dy}{dx} = x - y, \quad y(0) = 2 \]

8.3 Autonomous Differential Equations and Stability

13. Many bacteria strains are used by the dairy industry to produce different types of fermented milks and yogurts. During a fermentation experiment, the population \(y \) (in millions per mL) of bacteria *Lactobacillus fermentum* after \(t \) hours in a wheat medium satisfied the differential equation

\[y' = 0.532y(1 - \frac{y}{1900}) \]

a. Determine the equilibrium solutions to the differential equation.

b. Assess the stability of each equilibrium solution.

c. Initially, 8 million bacteria per mL were present. Determine the number of bacteria present after 5 hr.
8.4 Separable Differential Equations

14. Find the general solution to the given separable differential equations

 a. \(\frac{dy}{dx} = y \tan x \)
 b. \(\frac{1}{\sin x} \frac{dy}{dx} = y \cos x \)
 c. \(\frac{1}{(\sin x + \cos x)^2} \frac{dy}{dx} = y^2 \)

Chapter 9: Higher-Order and Systems of Differential Equations

9.1 Higher-Order Homogeneous Differential Equations

15. Solve for the general solution of the given homogeneous differential equations.

 a. \(y''' + y'' - 6y' = 0 \)
 b. \(y'' + 4y' + 4y = 0 \)
 c. \(y'' + 2y' + 2y = 0 \)

9.2 Higher-Order Nonhomogeneous Differential Equations

16. Find the solution to the given differential equation

 \(y'' + 4y = 16x \)

 with initial conditions \(y(0) = 2 \) and \(y'(0) = -3 \).

9.3 Systems of Linear Differential Equations

17. Solve the initial value problem

 \[
 \begin{align*}
 x' &= 2x + y + 3 \\
y' &= 5x - 2y + 12
 \end{align*}
 \]

 given the initial conditions \(x(0) = 6 \) and \(y(0) = -3 \).

9.4 Matrices and Trajectories

18. Use the reduction method to find the general solution of the system of differential equations.

 \[
 \begin{align*}
 x' &= y + 2t + 3 \\
y' &= -x + 4t - 2
 \end{align*}
 \]

19. Use matrix methods to find the general solution and the stability of the origin for the system of differential equations. Sketch the phase portrait.

 \[
 \begin{align*}
 x' &= -x + y \\
y' &= 2y
 \end{align*}
 \]

20. Find the general solution to the given systems of differential equations.

 a. \(\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \)
 a. \(\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \)
9.5 Models of Population Biology

21. On a wildlife preserve, the population of gorillas is modeled by the differential equation

\[\frac{dy}{dt} = 0.06y(60 - y) \]

Where \(t \) is measured in years.

a. Find the equilibrium solutions to the differential equation.

b. Compute the general solution to the differential equation.

c. Given that the preserve had 45 gorillas 4 years ago, find the number of gorillas currently on the preserve.

d. Describe what happens to the gorilla population in the long run.
Answers

1. a. \(\mathbf{AB} = \begin{pmatrix} 2 & 0 & 2 \\ 13 & -7 & 6 \end{pmatrix} \)

b. \(\mathbf{BA} \) is not defined.

c. \(\mathbf{A} + \mathbf{B} \) is also not defined.

d. \(3\mathbf{A} = \begin{pmatrix} 6 & 3 \\ -3 & 9 \end{pmatrix} \)

2. \(x = 2, \ y = -1 \).

3. The only solution is \(x = -1, \ y = 3 \) and \(z = 1 \).

4. \(\det \mathbf{A} = 1, \ \det \mathbf{B} = -6 \)

5. \(\mathbf{A}^{-1} = \begin{pmatrix} -3 & 2 \\ \frac{5}{2} & -\frac{3}{2} \end{pmatrix}, \ \mathbf{B}^{-1} = \begin{pmatrix} \frac{3}{2} & -\frac{1}{2} \\ 1 & 0 \end{pmatrix} \)

6. \(\lambda_1 = 2 \ \ \lambda_2 = 3 \)

\(\mathbf{v}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \ \ \mathbf{v}_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix} \)

7. \(x_n = 3(2^n) + 3^n \)

8. \(1.9385 \text{ m}^2 \)

9. \(f_x(x, y) = 3y^2 + 2y + 2x \)
\(f_y(x, y) = 6xy + 2x \)
\(f_{xx}(x, y) = 2 \)
\(f_{xy}(x, y) = 6y + 2 \)
\(f_{yx}(x, y) = 6y + 2 \)
\(f_{yy}(x, y) = 6x \)

10. \((0, 0)\) is a saddle point and \((\frac{8}{3}, \frac{16}{3}) \) is a local maximum.

11. a. \(y_g = Ce^{-2t} + \frac{1}{3}e^t \)

b. \(y_g = \frac{e^{x^2}}{x^2} + \frac{C}{x^2} \)

c. \(y_g = x|\cos x| + C|\cos x| \)

12. \(y(x) = 3e^{-x} + x - 1 \)

13. a. \(y(t) = 0 \) and \(y(t) = 1900 \).

b. \(y(t) = 0 \) is unstable and \(y(t) = P \) is stable.

c. \(108.3 \text{ million bacteria per mL} \).

14. a. \(y_g = C_1|\sec x| \)

b. \(y_g = C_1e^\frac{1}{4}\sin^2 x \)

c. \(y_g = \frac{-1}{x + \sin^2 x + C} \)
15. a. \(y_g(t) = C_1 + C_2 e^{2t} + C_3 e^{-3t} \)
 b. \(y_g(t) = C_1 e^{-2t} + C_2 t e^{-2t} \)
 c. \(y_g(t) = C_1 e^{\alpha t} \sin \beta t + C_2 e^{\alpha t} \cos \beta t \)

16. \(y(x) = -\frac{7}{2} \sin 2x + 2 \cos 2x + 4x \)

17. \(y(t) = \frac{20}{3} e^{3t} + \frac{10}{3} e^{-3t} - 3 \)

18. \(x(t) = C_1 \sin t + C_2 \cos t + 4t \)
 \(y(t) = C_1 \cos t - C_2 \sin t - 2t + 1 \)

19. \(x(t) = C_1 e^{-t} + C_2 e^{2t} \)
 \(y(t) = 3C_2 e^{2t} \)

20. a. \(x(t) = x_0 e^{2t} + y_0 t e^{2t} \)
 \(y(t) = y_0 e^{2t} \)
 b. \(\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = C_1 \begin{pmatrix} e^{2t} \cos t - e^{2t} \sin t \\ -e^{2t} \cos t + e^{2t} \sin t \end{pmatrix} + C_2 \begin{pmatrix} -e^{2t} \sin t \\ e^{2t} \cos t + e^{2t} \sin t \end{pmatrix} \)

21. a. \(y(t) = 0 \) and \(y(t) = 60 \)
 b. \(y_g = \frac{60}{1 + C_2 e^{-3.6t}} \)
 c. 60 gorillas
 d. \(y(t) = 60 \) is a stable solution, so if there are any gorillas on the reserve, the population will tend towards 60 gorillas in the long run.