Contents

1 Differentiation 2
 1.1 Review from Math 22100 2
 1.2 L’Hospital’s Rule 3
 1.3 Applications of Derivatives 4
 1.4 Newton’s Method 5

2 Integration 6
 2.1 General Power Rule Integrals .. 6
 2.2 Logarithmic and Exponential Integrals 7
 2.3 Trigonometric Integrals 8
 2.4 Inverse Trigonometric Forms 10
 2.5 Trigonometric Substitution 11
 2.6 Integration by Parts 12
 2.7 Integration of Rational Functions 13

3 Series 14
 3.1 Geometric Series 14
 3.2 Tests for Convergence 15
 3.3 Maclaurin Series 16
 3.4 Operations with Series 17
 3.5 Computations with Series 18
 3.6 Fourier Series 19

4 First-Order Differential Equations 20
 4.1 Solutions to Differential Equations 20
 4.2 Separation of Variables 21
 4.3 First-Order Linear Differential Equations 22
 4.4 Applications of Differential Equations 23

5 Higher Order Differential Equations 24
 5.1 Higher-Order Homogeneous Differential Equations 24
 5.2 Auxiliary Equations 25
 5.3 Non-homogeneous Differential Equations 26
 5.4 Applications of Second-Order Equations 27
 5.5 Computing the Laplace Transformation 28
 5.6 Computing the Inverse Laplace Transformation 29
 5.7 Solving Differential Equations Using Laplace Transformations 31
1 Differentiation

1.1 Review from Math 22100

Find the derivative of each of the following functions

1. \(y = 3 \ln \sqrt[3]{t^2 + 2} \)
2. \(y = \ln \frac{x}{2x - 1} \)
3. \(y = \frac{e^x}{x^2} \)

Solution

Use logarithm rules to simplify the first two. Use quotient rule on the third.

1. \(y' = \frac{2t}{t^2 + 2} \)
2. \(y' = \frac{1}{x} - \frac{2}{2x - 1} \)
3. \(y' = \frac{e^x(x - 2)}{x^3} \)
1.2 L'Hospital's Rule

Evaluate the following limits using L'Hospital's rule

1. \(\lim_{x \to 0} \frac{1 - e^x}{2x} \)

2. \(\lim_{x \to 0} \frac{x - \sin x}{x} \)

Solution

Both are already in the form \(\frac{0}{0} \), so apply L'Hospital's rule directly.

1. \(\lim_{x \to 0} \frac{1 - e^x}{2x} = \lim_{x \to 0} \frac{-e^x}{2} = \frac{-1}{2} \)

2. \(\lim_{x \to 0} \frac{x - \sin x}{x} = \lim_{x \to 0} \frac{1 - \cos x}{1} = 0 \)
1.3 Applications of Derivatives

Find the minima and maxima, the points of inflection, and sketch the graph of the curve below.

\[y = xe^{-x} \]

Solution

To calculate the extremum, find the zeros of the first derivative.

\[y'(x) = (x - 1)e^{-x} = 0 \]

Since \(e^{-x} > 0 \), we only have the solution \(x = 1 \). Therefore, the only possible relative extremum is at \(x = 1 \). To determine whether this is a maximum or minimum, use the second derivative test.

\[y''(1) = -e^{-1} < 0 \]

Therefore, \((1, e^{-1})\) is a local maximum.

To determine any points of inflection, find the zeros of the second derivative.

\[y''(x) = (x - 2)e^{-x} = 0 \]

Since \(e^{-x} > 0 \), we only have the solution \(x = 2 \). Since the second derivatives changes sign here (check values less than 2 and greater than 2), this value is an inflection point. To sketch the curve, it helps to find any asymptotes and where the function is increasing/decreasing. In doing so, we see the curve has a horizontal asymptote of \(y = 0 \), increasing on \((-\infty, 1)\), and decreasing on \((1, \infty)\). We can then see our graph has the following shape.
1.4 Newton’s Method

Find (approximately) a positive root of the following equation.

\[4 \sin x - x = 0 \]

(Note: Not all classes cover this material.)

Solution

Make a table of values using the relation

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \]

Where \(f(x) = 4 \sin x - x \). We may choose (almost) any value for \(x_0 \). We choose \(x_0 = 2 \). The table is the following

<table>
<thead>
<tr>
<th>(n)</th>
<th>(x_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2.6144</td>
</tr>
<tr>
<td>2</td>
<td>2.4793</td>
</tr>
<tr>
<td>3</td>
<td>2.4746</td>
</tr>
<tr>
<td>4</td>
<td>2.4746</td>
</tr>
</tbody>
</table>

The values remain the same (up to 4 decimal points) after \(n = 4 \). Therefore, \(x = 2.4746 \) is an approximate solution to our equation.
2 Integration

2.1 General Power Rule Integrals

Using the general power rule to evaluate the following integrals

1. \(\int e^{2x} \sqrt{1 + e^{2x}} \, dx \)

2. \(\int (1 - \cos 5x)^3 \sin 5x \, dx \)

3. \(\int_1^e \frac{\sqrt{\ln x}}{x} \, dx \)

Solution

1. Use the substitution \(u = 1 + e^{2x} \).

\[
\int e^{2x} \sqrt{1 + e^{2x}} \, dx = \int \frac{1}{2} \sqrt{u} \, du = \frac{1}{3} u^{3/2} + c = \frac{1}{3} (1 + e^{2x})^{3/2} + c
\]

2. Use the subsitution \(u = 1 - \cos 5x \).

\[
\int (1 - \cos 5x)^3 \sin 5x \, dx = \int \frac{1}{5} u^3 \, du = \frac{1}{20} u^4 + c = \frac{1}{20} (1 - \cos 5x)^4 + c
\]

3. Use the substitution \(u = \ln x \).

\[
\int_1^e \frac{\sqrt{\ln x}}{x} \, dx = \int_0^1 \sqrt{u} \, du = \frac{2}{3} u^{3/2} \bigg|_0^1 = \frac{2}{3}
\]
2.2 Logarithmic and Exponential Integrals

Evaluate the following integrals

1. \(\int te^{t^2} \, dx \)

2. \(\int 2^x \, dx \)

3. \(\int \frac{1}{x \ln x} \, dx \)

Solution

1. Use the substitution \(u = t^2 \).

\[
\int te^{t^2} \, dt = \int \frac{1}{2} e^u \, du = \frac{1}{2} e^u + c = \frac{1}{2} e^{t^2} + c
\]

2. Use the formula for integration of exponential functions.

\[
\int 2^x \, dx = \frac{1}{\ln 2} 2^x + c
\]

3. Use the substitution \(u = \ln x \).

\[
\int \frac{1}{x \ln x} \, dx = \int \frac{1}{u} \, du = \ln |u| + c = \ln |\ln x| + c
\]
2.3 Trigonometric Integrals

Evaluate the following integrals

1. $\int x^2 \sec x^3 \tan x^3 \, dx$

2. $\int x^3 \sec x^4 \, dx$

Solution

1. Use the substitution $u = x^3$.

$$\int x^2 \sec x^3 \tan x^3 \, dx = \int \frac{1}{3} \sec u \tan u \, du = \frac{1}{3} \sec u + c = \frac{1}{3} \sec x^3 + c$$

2. Use the substitution $u = x^4$.

$$\int x^3 \sec x^4 \, dx = \int \frac{1}{4} \sec u \, du = \frac{1}{4} \ln |\sec u + \tan u| + c = \frac{1}{4} \ln |\sec x^4 + \tan x^4| + c$$
Evaluate the following integrals

1. \(\int \sin^5 x \cos^6 x \, dx \)

2. \(\int \sin^2 x \cos^2 x \, dx \)

Solution

1. Separate one of the \(\sin x \) terms and write the rest in terms of \(\cos x \).

\[
\int \sin^5 x \cos^6 x \, dx = \int (\sin^2 x)^2 \cos^6 x \sin x \, dx = \int (1 - \cos^2 x)^2 \cos^6 x \sin x \, dx
\]

Now use the substitution \(u = \cos x \).

\[
\int (1 - \cos^2 x)^2 \cos^6 x \sin x \, dx = \int -(1 - u^2)^2 u^6 \, du = \int \left(-u^6 + 2u^8 - u^{10}\right) \, du
\]

\[
= \frac{-1}{7}u^7 + \frac{2}{9}u^9 - \frac{1}{11}u^{11} + c
\]

\[
= \frac{-1}{7}\cos^7 x + \frac{2}{9}\cos^9 x - \frac{1}{11}\cos^{11} x + c
\]

2. Use the trigonometric identities

\[
\sin 2\theta = 2 \sin \theta \cos \theta, \quad \sin^2 \theta = \frac{1}{2}(1 - \cos 2\theta)
\]

to simplify as follows.

\[
\int \sin^2 x \cos^2 x \, dx = \int (\sin x \cos x)^2 \, dx = \int \frac{1}{4} \sin^2 2x \, dx = \int \frac{1}{8}(1 - \cos 4x) \, dx
\]

Now integrate as normal.

\[
\int \left(\frac{1}{8} - \frac{1}{8}\cos 4x\right) \, dx = \frac{1}{8}x - \frac{1}{32}\sin 4x + c
\]
2.4 Inverse Trigonometric Forms

Use trigonometric substitution to evaluate the following integral

\[
\int \frac{1}{\sqrt{5 - 3x^2}} \, dx
\]

Solution

First, simplify the problem.

\[
\int \frac{1}{\sqrt{5 - 3x^2}} \, dx = \frac{1}{\sqrt{3}} \int \frac{1}{\sqrt{\frac{5}{3} - x^2}} \, dx
\]

Now use the substitution \(x = \sqrt{\frac{5}{3}} \sin \theta \) (since \(a = \sqrt{\frac{5}{3}} \)).

\[
\frac{1}{\sqrt{3}} \int \frac{1}{\sqrt{\frac{5}{3} - x^2}} \, dx = \frac{1}{\sqrt{3}} \int \frac{1}{\sqrt{\frac{5}{3} \cos^2 \theta} \sqrt{\frac{5}{3}}} \cos \theta \, d\theta
\]

\[
= \frac{1}{\sqrt{3}} \int d\theta = \frac{1}{\sqrt{3}} \theta + c = \frac{1}{\sqrt{3}} \sin^{-1} \left(\frac{x}{\sqrt{\frac{5}{3}}} \right) + c
\]

(Note: In the last step, to back substitute, we use the fact that \(x = \sqrt{\frac{5}{3}} \sin \theta \), then solved for \(\sin \theta \) and took the inverse.)
2.5 Trigonometric Substitution

Use a trigonometric substitution to evaluate the following integral.

\[
\int \frac{\sqrt{x^2 - 9}}{x} \, dx
\]

Solution

Use the substitution \(x = 3 \sec \theta \).

\[
\int \frac{\sqrt{x^2 - 9}}{x} \, dx = \int \frac{\sqrt{9 \tan^2 \theta}}{3 \sec \theta} 3 \sec \theta \tan \theta \, d\theta = \int 3 \tan^2 \theta \, d\theta
\]

Now use the identity \(\tan^2 \theta = \sec^2 \theta - 1 \).

\[
\int 3 \tan^2 \theta \, d\theta = \int 3 \sec^2 \theta - 3 \, d\theta = 3 \tan \theta - 3\theta + c
\]

Now make a triangle to back substitute.

\[
\begin{tikzpicture}
\draw (0,0) -- (30:3) -- (0,0) ;
\draw (0,0) -- (0,0) node[anchor=west] {3} ;
\draw (30:3) -- (30:0.25) node[anchor=north] {x} ;
\draw (0,0) -- (30:2.5) node[anchor=south] {\sqrt{x^2 - 9}} ;
\end{tikzpicture}
\]

This gives us

\[
\tan \theta = \frac{1}{3} \sqrt{x^2 - 9}, \quad \theta = \sec^{-1} \left(\frac{x}{3} \right)
\]

Therefore, we have

\[
\int \frac{\sqrt{x^2 - 9}}{x} \, dx = \sqrt{x^2 - 9} - 3 \sec^{-1} \left(\frac{x}{3} \right) + c
\]
2.6 Integration by Parts

Utilize integration by parts to evaluate the following integrals

1. \(\int xe^{-x} \, dx \)
2. \(\int \cot^{-1} x \, dx \)

Solution

1. Choose \(u = x \) and \(dv = e^{-x} \, dx \) to obtain the following.

\[
\int xe^{-x} \, dx = -xe^{-x} - \int -e^{-x} \, dx = -xe^{-x} - e^{-x} + c
\]

2. Choose \(u = \cot^{-1} x \) and \(dv = dx \) to obtain the following.

\[
\int \cot^{-1} x \, dx = x \cot^{-1} x - \int \frac{-x}{x^2 + 1} \, dx
\]

Now apply a \(u \)-substitution to evaluate the new integral to get the following.

\[
\int \cot^{-1} x \, dx = x \cot^{-1} x + \frac{1}{2} \ln |x^2 + 1| + c
\]
2.7 Integration of Rational Functions

Use either long division or partial fractions to evaluate the following integral.

\[\int \frac{x^3 + 3x}{(x^2 + 1)^2} \, dx \]

Solution

Begin by applying partial fractions.

\[
\frac{x^3 + 3x}{(x^2 + 1)^2} = \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{(x^2 + 1)^2}
\]

Multiplying both sides by \((x^2 + 1)^2\) gives

\[
x^3 + 3x = (Ax + B)(x^2 + 1) + (Cx + D)
\]

Since we would like the left side to be exactly the same as the right side, we must have the following.

\[
A = 1 \\
B = 0 \\
A + C = 3 \\
B + D = 0
\]

Which has the solution of

\[
A = 1, \quad B = 0, \quad C = 2, \quad D = 0
\]

Therefore, we have the following.

\[
\frac{x^3 + 3x}{(x^2 + 1)^2} = \frac{x}{x^2 + 1} + \frac{2x}{(x^2 + 1)^2}
\]

So we have

\[
\int \frac{x^3 + 3x}{(x^2 + 1)^2} \, dx = \int \frac{x}{x^2 + 1} + \frac{2x}{(x^2 + 1)^2} \, dx = \frac{1}{2} \ln |x^2 + 1| - \frac{1}{x^2 + 1} + c
\]

(Note: We skipped the integration of the two functions. They can be done using \(u\)-substitutions.)
3 Series

3.1 Geometric Series

Find the sum of the following series.

\[\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2^{n-1}} \]

Solution

First, rewrite the series to look a bit nicer.

\[\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2^{n-1}} = \sum_{n=1}^{\infty} \left(\frac{-1}{2} \right)^{n-1} \]

From this, we have \(r = -1/2 \). Since \(|r| < 1 \), the series converges. Then using the formula

\[\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1 - r} \]

We have the following.

\[\sum_{n=1}^{\infty} \left(\frac{-1}{2} \right)^{n-1} = \frac{1}{1 - (-1/2)} = \frac{2}{3} \]
3.2 Tests for Convergence

Determine whether the following series converges or diverges.

\[\sum_{n=1}^{\infty} \frac{n}{n^2 + 1} \]

(Note: Not all classes cover this material.)

Solution

Use limit comparison test and compare \(\frac{n}{n^2 + 1} \) to \(\frac{1}{n} \).

\[\lim_{n \to \infty} \frac{\frac{n}{n^2 + 1}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n^2}{n^2 + 1} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n^2}} = 1 \neq 0 \]

Therefore, the series in the problem converges if \(\sum \frac{1}{n} \) converges and diverges if \(\sum \frac{1}{n} \) diverges. Since the series \(\sum \frac{1}{n} \) diverges, the series of the problem diverges as well.
3.3 Maclaurin Series

Find the first three nonzero terms in the Maclaurin series for the following functions

1. $y = \cos x$
2. $y = \ln(1 + x)$

Solution

1. Use the formula for the MacLaurin series. The first few derivatives are as follows.

$$f(0) = 1, \quad f'(0) = 0, \quad f''(0) = -1, \quad f'''(0) = 0, \quad f''''(0) = 1$$

So we have the following.

$$\cos x \approx 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4$$

2. Use the formula for the MacLaurin series. The first few derivatives are as follows.

$$f(0) = 0, \quad f'(0) = 1, \quad f''(0) = -1, \quad f'''(0) = 2$$

So we have the following.

$$\ln(1 + x) \approx x - \frac{1}{2}x^2 + \frac{1}{3}x^3$$
3.4 Operations with Series

Find the Maclaurin series of the following function.

\[y = \ln(1 + x^2) \]

Solution 1

The following series should be familiar to us already.

\[\ln(1 + z) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} z^n}{n} \]

If we let \(z = x^2 \), we arrive at the following result.

\[\ln(1 + x^2) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n}}{n} \]

Solution 2

Differentiating the function gives us the following.

\[y' = \frac{2x}{1 + x^2} = \frac{2x}{1 - (-x^2)} \]

Using the formula

\[\frac{a}{1 - r} = \sum_{n=1}^{\infty} ar^{n-1} \]

we have

\[y' = \frac{2x}{1 - (-x^2)} = \sum_{n=1}^{\infty} 2x (-x^2)^{n-1} = \sum_{n=1}^{\infty} 2(-1)^{n-1} x^{2n-1} \]

To get back to our function \(y \), we now integrate.

\[y = \int y' \, dx = \int \sum_{n=1}^{\infty} 2(-1)^{n-1} x^{2n-1} \, dx = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n}}{n} + c \]

Plugging in \(x = 0 \) shows us that

\[y(0) = \ln(1 + 0^2) = 0, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1} 0^{2n}}{n} + c = 0 + c = c \]

So we must have \(c = 0 \). Therefore, we have

\[\ln(1 + x^2) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n}}{n} \]
3.5 Computations with Series

Use the first 4 terms of the Maclaurin series for \(y = e^{-x} \) to approximate the value of \(e^{-0.2} \). Determine the error of your approximation.

Solution

The first four terms of the Maclaurin series for \(y = e^{-x} \) is the following.

\[
y = e^{-x} \approx 1 - x + \frac{1}{2}x^2 - \frac{1}{6}x^3
\]

Plugging in \(x = 0.2 \) gives us

\[
y(-0.2) = e^{-0.2} \approx 1 - 0.2 + \frac{1}{2}(0.2)^2 - \frac{1}{6}(0.2)^3 = 0.8167
\]

The exact value of \(e^{-0.2} \) is approximately 0.81873. Therefore, the error given by our estimate is approximately 0.00006.
3.6 Fourier Series

Determine the Fourier series for the following function on the given interval

\[f(t) = \begin{cases}
0 & \text{if } -1 < t \leq 0 \\
 t & \text{if } 0 < t < 1
\end{cases} \]

Solution

First, determine the \(a_0 \) term.

\[a_0 = \frac{1}{1} \int_{-1}^{1} f(t) \, dt = \int_{0}^{1} t \, dt = \frac{1}{2} t^2 \bigg|_{0}^{1} = \frac{1}{2} \]

Now determine the \(a_n \) terms.

\[a_n = \frac{1}{1} \int_{-1}^{1} f(t) \cos(nt) \, dt = \int_{0}^{1} t \cos(nt) \, dt = \frac{1}{n} t \sin(nt) + \frac{1}{n^2} \cos(nt) \bigg|_{0}^{1} = \frac{\sin(n)}{n} + \frac{\cos(n)}{n^2} - \frac{1}{n^2} \]

Similarly, determine the \(b_n \) terms.

\[b_n = \frac{1}{1} \int_{-1}^{1} f(t) \sin(nt) \, dt = \int_{0}^{1} t \sin(nt) \, dt = -\frac{1}{n} t \cos(nt) + \frac{1}{n^2} \sin(nt) \bigg|_{0}^{1} = -\frac{\cos(n)}{n} + \frac{\sin(n)}{n^2} + \frac{1}{n} \]

Then the Fourier series is the following.

\[f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nt) + b_n \sin(nt) \]

Where \(a_n \) and \(b_n \) are the values found above.
4 First-Order Differential Equations

4.1 Solutions to Differential Equations

Show that the function

\[y = xe^{-2x} + 3e^{-2x} \]

is a solution to the given differential equation.

\[\frac{dy}{dx} + 2y = e^{-2x} \]

Solution

To show that the function given is a solution, we first compute its derivative.

\[y = xe^{-2x} + 3e^{-2x}, \quad y' = -2xe^{-2x} - 5e^{-2x} \]

Now we plug these values (y and y') in our differential equation for y and its derivative.

\[\left(-2xe^{-2x} - 5e^{-2x}\right) + 2 \left(xe^{-2x} + 3e^{-2x}\right) = -2xe^{-2x} - 5e^{-2x} + 2xe^{-2x} + 6e^{-2x} = e^{-2x} \]

Therefore, our function satisfies the differential equation. This means that the function is a solution.
4.2 Separation of Variables

Find the general solution to the given differential equations

1. \(dx + (2 \cos^2 x - y \cos^2 x) \, dy = 0 \)
2. \(xe^{y} \, dx + e^{-x} \, dy = 0 \)

Solution

1. First, simplify the equation.

\[
\begin{align*}
\quad dx + (2 \cos^2 x - y \cos^2 x) \, dy &= 0 \\
\quad dx + \cos^2 x (2 - y) \, dy &= 0 \\
\quad \sec^2 x \, dx + (2 - y) \, dy &= 0 \\
\end{align*}
\]

Now that the variables are separated (there are no terms with both \(x \) and \(y \)) we can integrate.

\[
\int \sec^2 x \, dx + \int (2 - y) \, dy = c
\]

\[
\tan x + 2y - \frac{1}{2} y^2 = c
\]

This is the general solution to the differential equation.

2. Simplify the equation as before.

\[
\begin{align*}
\quad xe^{y} \, dx + e^{-x} \, dy &= 0 \\
\quad xe^{x} \, dx + e^{-y} \, dy &= 0 \\
\end{align*}
\]

(Divide by \(e^{-x} \) and then by \(e^{y} \)) Now integrate.

\[
\int xe^{x} \, dx + \int e^{-y} \, dy = c
\]

\[
(x - 1)e^{x} - e^{-y} = c
\]

(We skipped the integration by parts in the first integral) This is the general solution to the differential equation.
4.3 First-Order Linear Differential Equations

Find the solution to the following differential equation.

\[
2 \frac{dy}{dx} - 8xy = e^{2x^2}
\]

Solution

First, we need the equation to have no term in front of \(\frac{dy}{dx} \), so we simplify.

\[
2 \frac{dy}{dx} - 8xy = e^{2x^2}
\]

\[
\frac{dy}{dx} - 4xy = \frac{1}{2} e^{2x^2}
\]

Now calculate the integrating factor.

\[\mu(x) = e^{\int -4x \, dx} = e^{-2x^2}\]

Now multiply this to both sides of the equation.

\[e^{-2x^2} \frac{dy}{dx} - 4xe^{-2x^2} y = \frac{1}{2}\]

The reason for this is that now the left side of the equation can be simplified to the derivative of \(y \) times our integrating factor.

\[e^{-2x^2} \frac{dy}{dx} - 4xe^{-2x^2} y = \frac{1}{2}\]

\[\frac{d}{dx} \left(ye^{-2x^2} \right) = \frac{1}{2}\]

Now integrate both sides and simplify.

\[
\int \frac{d}{dx} \left(ye^{-2x^2} \right) \, dx = \int \frac{1}{2} \, dx
\]

\[ye^{-2x^2} = \frac{1}{2} x + c\]

\[y = \frac{1}{2} xe^{2x^2} + ce^{2x^2}\]

This is the general solution to the differential equation.
4.4 Applications of Differential Equations

A bacteria culture is known to increase at a rate proportional to the number of bacteria present. It is observed that the size of the culture triples in 3 hours. After how many hours should it be 10 times as large?

Solution

The information of the problem tells us that

$$\frac{dP}{dt} = kP$$

Where P is the number of bacteria. Let the initial amount of bacteria be P_0 (at $t = 0$). Separating variables and integrating shows that we have

$$P(t) = Ce^{kt}$$

Now plug in $t = 0$ to get

$$P(0) = P_0, \quad P(0) = Ce^0 = C$$

So we have

$$P(t) = P_0e^{kt}$$

The problem states that when $t = 3$, $P = 3P_0$ (triples in 3 hours). So we have

$$P(3) = 3P_0 = P_0e^{3k}$$

Solving for k shows that

$$k = \frac{1}{3} \ln 3$$

So we have

$$P(t) = P_0e^{\frac{1}{3}t\ln 3}$$

The problem now is to determine for what value of t gives $P(t) = 10P_0$. Setting $P(t) = 10P_0$ gives us

$$10P_0 = P_0e^{\frac{1}{3}t\ln 3}$$

$$10 = e^{\frac{1}{3}t\ln 3}$$

$$\ln 10 = \frac{1}{3}t\ln 3$$

$$\frac{3\ln 10}{\ln 3} = t$$
5 Higher Order Differential Equations

5.1 Higher-Order Homogeneous Differential Equations

Find the general solution to the given differential equations

1. \(\frac{6d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0 \)
2. \(2D^2y - 3Dy + y = 0 \)

Solution

1. Set up and solve the auxiliary equation.

\[
6r^2 - r - 2 = 0
\]
\[(2r + 1)(3r - 2) = 0\]
\[r = -\frac{1}{2}, \ r = \frac{2}{3}\]

Then our general solution is the following.

\[y(t) = c_1e^{-\frac{1}{2}t} + c_2e^{\frac{2}{3}t}\]

2. Set up and solve the auxiliary equation as before.

\[
2r^2 - 3r + 1 = 0
\]
\[(2r - 1)(r - 1) = 0\]
\[r = \frac{1}{2}, \ r = 1\]

Then our general solution is the following.

\[y(t) = c_1e^{\frac{1}{2}t} + c_2e^t\]
5.2 Auxiliary Equations

Solve the following differential equations.

1. \((D^2 + 25)y = 0\)
2. \((D^2 - 3D + 5)y = 0\)

Solution

1. The auxiliary equation is
 \[r^2 + 25 = 0 \]
 Which has roots \(r = \pm 5i\). Then since these values are complex, the general solution is
 \[y(t) = c_1 \sin(5t) + c_2 \cos(5t) \]

2. The auxiliary equation is
 \[r^2 - 3r + 5 = 0 \]
 \[r = \frac{3 \pm \sqrt{9 - 4(1)(5)}}{2} = \frac{3 \pm i\sqrt{11}}{2} \]
 Since these values are complex, the imaginary parts turn into sines and cosines as follows.
 \[y(x) = c_1 e^{\frac{3x}{2}} \sin \left(\frac{\sqrt{11}}{2} x \right) + c_2 e^{\frac{3x}{2}} \cos \left(\frac{\sqrt{11}}{2} x \right) \]
5.3 Non-homogeneous Differential Equations

Find the general solution to the given differential equations.

\[(D^2 - D + 2)y = 4e^{3x}\]

Solution

First solve the auxiliary equation to determine the homogeneous solution.

\[r^2 - r + 2 = 0\]
\[r = \frac{1 \pm \sqrt{1 - 4(1)(2)}}{2} = \frac{1 \pm \sqrt{7}}{2}\]

So the homogeneous equation is the following.

\[y_h(x) = c_1 e^{\frac{\sqrt{7}}{2} x} \sin \left(\frac{\sqrt{7}}{2} x\right) + c_2 e^{\frac{\sqrt{7}}{2} x} \cos \left(\frac{\sqrt{7}}{2} x\right)\]

To determine the particular solution, we guess that it has the form \(y_p(t) = Ae^{3x}\). Then we have

\[y_p(x) = Ae^{3x}\]
\[Dy_p(x) = 3Ae^{3x}\]
\[D^2y_p(x) = 9Ae^{3x}\]

Plugging these into our equation, we get the following.

\[9Ae^{3x} - 3Ae^{3x} + 2Ae^{3x} = 4e^{3x}\]
\[8Ae^{3x} = 4e^{3x}\]
\[A = 2\]

Therefore, our particular equation is \(y_p(t) = 2e^{3x}\). Our general solution has the form \(y_g = y_h + y_p\). So we have

\[y_g(t) = c_1 e^{\frac{\sqrt{7}}{2} x} \sin \left(\frac{\sqrt{7}}{2} x\right) + c_2 e^{\frac{\sqrt{7}}{2} x} \cos \left(\frac{\sqrt{7}}{2} x\right) + 2e^{3x}\]
5.4 Applications of Second-Order Equations

A 2 lb weight stretches a spring 6 in. The weight is pushed 7 in above the equilibrium position and released. Find the motion of the weight as a function of time, assuming no damping.

Solution

Using the equations

\[F = kx, \quad F = mg \]

and using the information of the problem, we have if \(x = 0 \), the force of the spring is equal to the force of gravity, so we can see

\[6k = 2(386.09), \quad k = 128.697 \]

Then using the equation for spring position, we have

\[2D^2y + 128.697y = 0 \]

(Where \(y \) is distance from equilibrium) Solving this gives us

\[y(t) = c_1 \sin(64.35t) + c_2 \cos(64.35t) \]

Our initial conditions are when \(t = 0, \ y = 7, \ \dot{y} = 0 \). Plugging these in, we arrive at

\[y(t) = 7 \cos(64.35t) \]
5.5 Computing the Laplace Transformation

Verify the identity.

\[L\{\sin at\} = \frac{a}{s^2 + a^2} \]

Solution

Begin with the definition of Laplace transformation.

\[L\{\sin ax\} = \int_0^{\infty} e^{-sx} \sin ax \, dx = \lim_{t \to \infty} \int_0^t e^{-sx} \sin ax \, dx \]

This integral takes a bit of work to solve. Integration by parts is the usual way of doing it, and it will be omitted.

\[
\lim_{t \to \infty} \int_0^t e^{-sx} \sin ax \, dx = \lim_{t \to \infty} \left. \frac{-ae^{-sx} \cos ax - se^{-sx} \sin ax}{s^2 + a^2} \right|_0^t
\]

\[
= \lim_{t \to \infty} \left(\frac{-ae^{-st} \cos at - se^{-st} \sin at}{s^2 + a^2} \right) + \frac{a}{s^2 + a^2}
\]

\[
= \frac{a}{s^2 + a^2}
\]

(You may need to use L'Hospital's rule to evaluate the limit!)
5.6 Computing the Inverse Laplace Transformation

Compute the inverse Laplace transformation of the function.

\[F(s) = \frac{5s}{s^2 + 6} \]

Solution

We know the following.

\[L^{-1} \left(\frac{a}{s^2 + a^2} \right) = \sin at, \quad L^{-1} \left(\frac{s}{s^2 + a^2} \right) = \cos at \]

So we would like to rewrite what we have in terms of these formulas. Since there is an \(s \) term in the numerator, we will use the second equation. Note that the 5 constant does not affect the inverse Laplace, so we have

\[L^{-1} \left(\frac{5s}{s^2 + 6} \right) = 5L^{-1} \left(\frac{s}{s^2 + (\sqrt{6})^2} \right) = 5 \cos \left(\sqrt{6}t \right) \]
Compute the inverse Laplace transformation of the function.

\[F(s) = \frac{s}{(s - 1)(s + 3)} \]

Solution

We will first do partial fractions to make the problem simpler.

\[\frac{s}{(s - 1)(s + 3)} = \frac{1/4}{s - 1} + \frac{3/4}{s + 3} \]

Then use the rule

\[L^{-1} \left(\frac{1}{s - a} \right) = e^{at} \]

To obtain

\[L^{-1} \left(\frac{s}{(s - 1)(s + 3)} \right) = \frac{1}{4} L^{-1} \left(\frac{1}{s - 1} \right) + \frac{3}{4} L^{-1} \left(\frac{1}{s + 3} \right) = \frac{1}{4} e^{t} + \frac{3}{4} e^{-3t} \]
5.7 Solving Differential Equations Using Laplace Transformations

Use Laplace transformations to solve the following differential equation

\[y'' - 4y' + 4y = e^{3t}, \quad y(0) = 0, \quad y'(0) = -2 \]

Solution

First, apply the Laplace transformation to both sides of the equation and simplify.

\[
L(y'') - 4L(y') + 4L(y) = L(e^{3t})
\]

\[
\left(s^2L(y) - sy(0) - y'(0)\right) - 4 \left(sL(y) - y(0)\right) + 4L(y) = \frac{1}{s - 3}
\]

\[
L(y) \left(s^2 - 4s + 4\right) + 2 = \frac{1}{s - 3}
\]

\[
L(y)(s - 2)^2 = \frac{1}{s - 3} - 2
\]

\[
L(y) = \frac{1}{(s - 3)(s - 2)^2} - \frac{2}{(s - 2)^2}
\]

Now we must apply partial fractions to the right side to simplify further.

\[
\frac{1}{(s - 3)(s - 2)^2} = \frac{1}{s - 3} + \frac{-1}{s - 2} + \frac{-1}{(s - 2)^2}
\]

Then use the rules

\[L^{-1} \left(\frac{1}{s - a} \right) = e^{at}, \quad L^{-1} \left(\frac{n!}{(s - a)^n} \right) = t^n e^{at} \]

To obtain the final answer.

\[
y = L^{-1} \left(\frac{1}{s - 3} \right) - L^{-1} \left(\frac{1}{s - 2} \right) - 3L^{-1} \left(\frac{1}{(s - 2)^2} \right) = e^{3t} - e^{2t} - 3te^{2t}
\]