Contents

1 Differentiation 2
 1.1 Review from Math 22100 .. 2
 1.2 L'Hospital's Rule .. 3
 1.3 Applications of Derivatives ... 4
 1.4 Newton's Method .. 5

2 Integration 6
 2.1 General Power Rule Integrals .. 6
 2.2 Logarithmic and Exponential Integrals 7
 2.3 Trigonometric Integrals ... 8
 2.4 Inverse Trigonometric Forms .. 10
 2.5 Trigonometric Substitution ... 11
 2.6 Integration by Parts .. 12
 2.7 Integration of Rational Functions 13

3 Series 14
 3.1 Geometric Series .. 14
 3.2 Tests for Convergence ... 15
 3.3 Maclaurin Series ... 16
 3.4 Operations with Series .. 17
 3.5 Computations with Series .. 18
 3.6 Fourier Series .. 19

4 First-Order Differential Equations 20
 4.1 Solutions to Differential Equations 20
 4.2 Separation of Variables ... 21
 4.3 First-Order Linear Differential Equations 22
 4.4 Applications of Differential Equations 23

5 Higher Order Differential Equations 24
 5.1 Higher-Order Homogeneous Differential Equations 24
 5.2 Auxiliary Equations .. 25
 5.3 Non-homogeneous Differential Equations 26
 5.4 Applications of Second-Order Equations 27
 5.5 Computing the Laplace Transformation 28
 5.6 Computing the Inverse Laplace Transformation 29
 5.7 Solving Differential Equations Using Laplace Transformations .. 31
1 Differentiation

1.1 Review from Math 22100

Find the derivative of each of the following functions

1. \(y = 3 \ln \sqrt{t^2 + 2} \)

2. \(y = \ln \frac{x}{2x - 1} \)

3. \(y = \frac{e^x}{x^2} \)
1.2 L’Hospital’s Rule

Evaluate the following limits using L’Hospital’s rule

1. \(\lim_{x \to 0} \frac{1 - e^x}{2x} \)

2. \(\lim_{x \to 0} \frac{x - \sin x}{x} \)
1.3 Applications of Derivatives

Find the minima and maxima, the points of inflection, and sketch the graph of the curve below.

\[y = xe^{-x} \]
1.4 **Newton’s Method**

Find a positive root of the following equation.

\[4 \sin x - x = 0 \]

(Note: Not all classes cover this material.)
2 Integration

2.1 General Power Rule Integrals

Using the general power rule to evaluate the following integrals

1. \(\int e^{2x} \sqrt{1 + e^{2x}} \, dx \)

2. \(\int (1 - \cos 5x)^3 \sin 5x \, dx \)

3. \(\int_1^e \frac{\sqrt{\ln x}}{x} \, dx \)
2.2 Logarithmic and Exponential Integrals

Evaluate the following integrals

1. \(\int te^{x^2} \, dx \)

2. \(\int 2^x \, dx \)

3. \(\int \frac{1}{x \ln x} \, dx \)
2.3 Trigonometric Integrals

Evaluate the following integrals

1. \(\int x^2 \sec x^3 \tan x^3 \, dx \)

2. \(\int x^3 \sec x^4 \, dx \)
Evaluate the following integrals

1. \[\int \sin^5 x \cos^6 x \, dx \]

2. \[\int \sin^2 x \cos^2 x \, dx \]
2.4 Inverse Trigonometric Forms

Use trigonometric substitution to evaluate the following integral

\[\int \frac{1}{\sqrt{5 - 3x^2}} \, dx \]
2.5 Trigonometric Substitution

Use a trigonometric substitution to evaluate the following integral.

\[\int \frac{\sqrt{x^2 - 9}}{x} \, dx \]
2.6 Integration by Parts

Utilize integration by parts to evaluate the following integrals

1. \(\int xe^{-x} \, dx \)

2. \(\int \cot^{-1} x \, dx \)
2.7 Integration of Rational Functions

Use either long division or partial fractions to evaluate the following integral.

\[
\int \frac{x^3 + 3x}{(x^2 + 1)^2} \, dx
\]
3 Series

3.1 Geometric Series

Find the sum of the following series.

\[\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2^{n-1}} \]
3.2 Tests for Convergence

Determine whether the following series converges or diverges.

\[\sum_{n=1}^{\infty} \frac{n}{n^2 + 1} \]

(Note: Not all classes cover this material.)
3.3 Maclaurin Series

Find the first three nonzero terms in the Maclaurin series for the following functions

1. \(y = \cos x \)

2. \(y = \ln(1 + x) \)
3.4 Operations with Series

Find the Maclaurin series of the following function.

\[y = \ln(1 + x^2) \]
3.5 Computation with Series

Use the first 4 terms of the Maclaurin series for $y = e^{-x}$ to approximate the value of $e^{-0.2}$. Determine the error of your approximation.
3.6 Fourier Series

Determine the Fourier series for the following function on the given interval

\[f(t) = \begin{cases}
0 & \text{if } -1 < t \leq 0 \\
 t & \text{if } 0 < t < 1
\end{cases} \]
4 First-Order Differential Equations

4.1 Solutions to Differential Equations

Show that the function

\[y = xe^{-2x} + 3e^{-2x} \]

is a solution to the given differential equation.

\[\frac{dy}{dx} + 2y = e^{-2x} \]
4.2 Separation of Variables

Find the general solution to the given differential equations

1. \(dx + (2 \cos^2 x - y \cos^2 x) \, dy = 0 \)

2. \(xe^y \, dx + e^{-x} \, dy = 0 \)
4.3 First-Order Linear Differential Equations

Find the solution to the following differential equation.

\[2 \frac{dy}{dx} - 8xy = e^{2x^2} \]
4.4 Applications of Differential Equations

A bacteria culture is known to increase at a rate proportional to the number of bacteria present. It is observed that the size of the culture triples in 3 hours. After how many hours should it be 10 times as large?
5 Higher Order Differential Equations

5.1 Higher-Order Homogeneous Differential Equations

Find the general solution to the given differential equations

1. \(6 \frac{d^2 y}{dx^2} - \frac{dy}{dx} - 2y = 0\)

2. \(2D^2 y - 3Dy + y = 0\)
5.2 Auxiliary Equations

Solve the following differential equations.

1. \((D^2 + 25)y = 0\)

2. \((D^2 - 3D + 5)y = 0\)
5.3 Non-homogeneous Differential Equations

Find the general solution to the given differential equations.

\[(D^2 - D + 2)y = 4e^{3x}\]
5.4 Applications of Second-Order Equations

A 2 lb weight stretches a spring 6 in. The weight is pushed 7 in above the equilibrium position and released. Find the motion of the weight as a function of time, assuming no damping.
5.5 Computing the Laplace Transformation

Verify the identity.

\[L\{\sin at\} = \frac{a}{s^2 + a^2} \]
5.6 Computing the Inverse Laplace Transformation

Compute the inverse Laplace transformation of the function.

\[F(s) = \frac{5s}{s^2 + 6} \]
Compute the inverse Laplace transformation of the function.

\[F(s) = \frac{s}{(s - 1)(s + 3)} \]
5.7 Solving Differential Equations Using Laplace Transformations

Use Laplace transformations to solve the following differential equation

\[y'' - 4y' + 4y = e^{3t}, \ y(0) = 0, \ y'(0) = -2 \]